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Using Bayes’ formula, the parameters in a given model fitting data from perturbed angular
correlation of y-rays (PAC) experiments are all integrated out, giving as the result the total proba-
bility for the model. Experimental examples are given from PAC for models containing one and two
nuclear quadrupole interactions, respectively. It is shown how the Bayesian formulation leads to a
quantification of the probability of the correctness of the models. Furthermore, this method leads
to a transparent and intuitively appealing criterion for model selection. Examples are given using
PAC measurements on two proteins: liver alcohol dehydrogenase and azurin.
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1. Introduction

Bayesian methods are becoming more and more
popular. This is partly due to their simple and appeal-
ing nature, but mainly to the reliable results the meth-
ods give (see e.g. [1] for a review of Bayesian methods).
Bayesian methods use prior probabilities for the fit-
ting parameters, a procedure which might seem unrea-
sonable. But prior probabilities are always used when
analysing experimental data. This is done explicitly
when a model is chosen, or implicitly (or perhaps even
inconsciously) when a prior probability enters the cal-
culations without appearing as such. Bayesian meth-
ods are also useful for the selective integration over
parameters of a given model to improve the precision
of the remaining parameters of the model, as has been
shown by Bretthorst [2] for nuclear magnetic resonance
experiments. In perturbed angular correlation (PAC)-
spectroscopy one often wants to know whether a model
assuming only one nuclear quadrupole interaction
(NQI) is sufficient to fit the measured data. In this paper
it is shown that the Bayesian method helps deciding
which of two proposed models should be chosen.

2. Theory
2.1. Bayesian model selection

The most likely model is found by calculating the
total probability for each model. This is demonstrated
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below, using Bayes’ formula and Gaussian probability
densities for the parameters of the models. The total
probability of each model is then calculated by inte-
gration over the parameters.

When applied to the problem of finding which hy-
pothesis H; (or model) is most plausible after data
d=(d,,...,d,) have been measured, Bayes’ theorem
gives for the probability P(H,|d):

P(H;|d)=P(d|H;) - P(H,)/P(d), (1)

where P(d| H;) is the probability of the data d, assum-
ing that the model H, is correct, P(H;) denotes the
prior probability for the model H; which is assumed
constant for “reasonable” hypotheses (i.e. different
prior probabilities should not be ascribed to different
reasonable hypotheses), and P(d) is the probability for
measuring the data, but this term is reduced to a
renormalization constant after the data have been
measured.

For a given model H; having parameters f=
(fi,---, fy) the most likely f is found using Bayes’
theorem again:

P(d|H,.f) P(f|H,)
P(d|H)

P(f|H;.d)= 2

The normalising constant P (d| H;) is usually called the
evidence for the hypothesis H,.

When the most likely set of parameters for a given
model H; into be determined, the evidence can be
ignored. This is often referred to as “the first level of
inference” [1]. However, to determine which of several
models is the most likely (at “the second level of infer-
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ence”), (1) and 2 lead to
P(H;|d) oc P(d|H;) jP d|H,f)P(fIH)dY f, (3)

where the likelihood is

P(d|H,,f)=exp(=L)/Z,, (4)

Z,=[exp(—L)d"d. ®)

For the usual case of Gaussian errors, L =y2/2 and
Z,=T1(n c?)*?, where o; is the standard deviation
of the Gaussian noise at data point i. 32 is defined in
the conventional manner, i.e.
M (d;—y)?
=% ———5—, (6)

i=1 ag;

where y(f) denotes the modelled data.
Assuming similar Gaussian distributions, the prior
probability for the distribution f can be written as

P(f|H;)=exp(S)/Zs (7)
with
N T 2
= 7, (hmeofel ®
and
Zs=[exp(S)d" f=T1(2mn s})'"2, ©
where f;, and f, are the estimates of the parameters

in the model before and after the data are measured,
respectively, and s; defines the limits within which the
parameter f;is known to be found prior to the exper-
iment. For the application of this method the exact
choice of f,;,. and s is usually not very important.

It is noted that by using the specific choice for the
prior probability in (8), S is equal to the second order
approximation to the conventional expression for the
entropy of a distribution when the distribution is non-
negative and s;=1/ f; .ior-

Calculating the evidence from the above equations,
one obtains

P(d|H,) = [exp(S) e>;) x*2)d" f
SZL
_exp(S,) fexp(—x*/2)d" f
= Z;Z, » (10)

assuming the prior distribution to be constant over
the region where the posterior is maximal. For
B=VV#?/2, (10) gives the expression for the evidence
of a model:

Bayes’ Theorem Applied to the Selection of Models in PAC 423

exp(S,) (21)"? exp(—y3/2) det(B)~ /2
M) T12ra})"

_exp(S,) det(B)” "% exp(—x3/2)

- 1) [12na})"? '

From (11) the normalised probability for a model can
be calculated. For several possible models the one
having the largest probability should be selected. In
(11) the last factor, exp(— yx3/2), is proportional to the
likelihood (the quality of the fit), and the [J(2 z 6?)'/?
is constant for a given data set. The remaining part of
the fraction has been termed the “Occam factor” as it
is this part which penalises the probability if more
parameters are introduced in a model. Even though
an increasing number of parameters will give a better
fit to the data, the Occam factor will ensure that the
total probability (as given by (11)) decreases if more
than a “best” (most likely) number of parameters is
introduced. If the parameters are almost independent,
det(B)~ /2 can be approximated by the product of the
posterior uncertainties of the parameters [ [(A;) (given
by the fitting procedure) which for S,x~0 gives the
evidence as

2 A,
P(d|H;) oc exp(—x5/2) H(;),

P(lei)=

(11)

(12)

From (12) it is obvious how the Occam factor in the
form of [T(A/s;) is balanced against the quality of the
fit exp(—x3/2). [1(Aj/s;) is the ratio of the accessible
volume of the parameter space after and before the
experiment, respectively. The negative logarithm of
this ratio is equal to the information content of the
experiment.

In the examples shown below, (11) has been used for
calculations of the evidence.

3. Application to PAC
3.1. PAC

In y-ray PAC spectroscopy the NQI of the nuclear
quadrupole moment with the electric field gradient
(EFG) from the surrounding charge distribution is
measured. In the PAC-experiments referred to in this
work the isotope !*'™Cd was used. The “angular cor-
relation” refers to the fact that the two y-rays are not
emitted in random directions with respect to each
other. Furthermore, if the nucleus interacts with
extranuclear fields during the decay, the angular cor-
relation is perturbed. The perturbed angular correla-
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tion can be measured and provides information about
the local charge distribution around the PAC-isotope.
By using appropriate combinations of coincidence
count-rates in the detectors, the experimental data are
described by the following time dependent function,
(see e.g. [4]):

AY Gy (o, 1, 8,43 1)+ ¢ (13)

3
=A§” e—(ll) <a0+ Z a; COS(b,‘ (e t)

i=1
_'ﬁ"‘f’_",'!sﬂz = !(b 5t)?
-exp| 162 [ exp] 2® +¢o,

where AS" is the measured amplitude of the an-
isotropy, w, is proportional to the numerically largest
element of the diagonalised EFG-tensor and 7 is the
so-called asymmetry parameter, also determined by
the EFG-tensor [4]. The parameters a; and b; are de-
pendant on 7 [3], and ¢, is the zero point level of the
data. The Brownian motion of the molecules in solu-
tion gives rise to a rotational correlation time, t,,
which is fitted through 42 =1/7,. Small variations in the
coordination geometry of the PAC-isotope from one
molecule to the next give rise to a spread of w,-values,

which is fitted with a Gaussian distribution centered
—(b;jwot,e)*

at w, having the width 4. The exp{ 161n2 }-term
takes into account the limited time resolution of the
experimental setup, with ¢, =1 ns. Equation (13) is
valid under the assumptions that the PAC-isotope oc-
cupies the same site in all the randomly oriented
molecules and that the molecules move sufficiently
slow to apply the socalled adiabatic approximation
(4].

If the fit includes more than one NQI, it is given by
a sum of terms. For example the function fitted to the
data assuming two NQIs is co+ A5, G,(we 1,11,
1y A3 )+ AT Gy(Wo 25 M2, 035 423 1).

A priori unrestrictive limits may be set for the
parameters f to be fitted, and in this work the following
values have been used: —0.5<¢,<0.5,0.0< 457 <0.2,
0.0<n<1.0, 0.0 Mrad/s<wy,<1000 Mrad/s, 0.0<é
<0.5,0.0nns" ! </<1.0ns™ ' These values have been
chosen on the basis of a very large number of PAC-ex-
periments, spanning a wide range of experimental
conditions, and they determine the s; in (11).

3.2. One or two NQIs

The addition of an extra NQI leads to an additional
five parameters in the fitting function. The precision of
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the fitted parameters is typically of the order of 1%
(i.e. A;/s;x0.01 in (12)), leading to a difference in the
Occam factor of the order of 0.01° between the two
models. As the quality of the fit is usually expressed
through the value of the reduced chi-square, 32, the
criterion for acceptance of the increased complexity of
the two-NQI model is that 7 has to decrease by about
2 510g 0.01, where M is the number of data points.
For the examples shown below, M is about 200. This
leads to a reduction in y} of about 0.2 to accept the
additional NQI (or a reduction in x2/2 — the exponent
in (11) — of about 20).

However, if the two-NQI fit is much “broader” than
the one-NQI fit, in the sense that the Occam factor is
larger for the two-NQI fit, the two-form model should
be preferred even if it lowers the y? only marginally, as
the “weaker” statement about the two-NQI model is
less informative than the more precise statement
about the one-NQI model. Clearly, this will rarely be
the case when analysing PAC spectra.

The application of Bayes’ theorem is of course only
correct to the extent that the underlying assumptions
are correct, most importantly, for example, that the
noise of the experiment as well as the prior for the
parameters have been estimated correctly. If the noise
level of the experiment is estimated incorrectly, this
will influence the choice of model as the absolute value
of the chi-square is used in the calculations. E.g. a 20%
error in the estimate of the standard deviation for the
measured data will change the difference in the chi-
squares between two models by 44%. This implies
that the reduction in y?/2 necessary to accept an addi-
tional NQI is changed (from 20 as mentioned above)
by about 9. Similarly, changing the width of the prior
for the parameters by a factor of two changes the
Occam factor by exp(3.5). Consequently, if the stan-
dard deviation for the measured data is known to
about 20% precision and the prior for the parameters
1s assumed to be known within a factor of two, then
the log(evidence) is only known with a precision of
10—15 and the difference in log(evidence) between two
models should be larger than this to distinguish be-
tween the models. For PAC this means that if the
difference in log(evidence) is smaller than 1015, the
simpler model having fewer parameters should be pre-
ferred.

3.3. Examples

For the case of PAC a box function will impart the
prior information about the fitting parameters better
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than a Gaussian, and consequently a box function of
width s; has been used for S in (11) and the following
examples.

Example 1: The enzyme horse liver alcohol dehydro-
genase (EC 1.1.1.1) catalyses the reversible oxidation
of alcohols using NAD™ as coenzyme. It contains a
zinc ion at the active site which is bound to two cys-
teines, one histidine and one solvent molecule. In the

resting state of the enzyme the solvent molecule is
H,O. The pK, of this water molecule has been deter-
mined by PAC to be 11.0+0.2 for the cadmium substi-
tuted enzyme [5]. This was done by recording spectra
at several different pH values. At low pH only a single
NQI is expected (corresponding to metalbound H,O),
but at pH values near the pK, two NQIs should be
found, and then again at high pH only a single NQI
is expected (corresponding to metalbound OH ™). In
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Table 1. LADH at different pH-values. The difference in »?
and log(evidence), respectively, between fits using 1 and
2 NQIs.

pH Ay? Alog(evidence)
7.9 0.00 —-13
9.4 0.14 -5

10.3 0.81 69

11.2 1.51 129

1.5 0.29 17

Table 2. Azurin and the Met121Asn mutant. Difference in 7/
and log(evidence), respectively, between fits using 1 and
2 NQIs.

Sample Ay? Alog(evidence)
native azurin 0.02 -9
Met121Asn mutant of azurin 0.32 15

Table 1 the method presented in this paper has been
applied to the experimental data recorded at different
pH-values. The variation of Alog(evidence) is in good
agreement with expectation, i.e. the evidence for two
NQIs peaks strongly around the pK,. Furthermore, it
is found that the criterion for preferring a fit with two
NQIs to a fit with only a single NQI, is a change in ?
of 0.15-0.30, which is also in good agreement with
experience.

Example 2: The protein azurin participates in electron
transfer processes in some Gram negative bacteria [6].
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