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Using Bayes' formula, the parameters in a given model fitting data from perturbed angular 
correlation of y-rays (PAC) experiments are all integrated out, giving as the result the total proba-
bility for the model. Experimental examples are given from PAC for models containing one and two 
nuclear quadrupole interactions, respectively. It is shown how the Bayesian formulation leads to a 
quantification of the probability of the correctness of the models. Furthermore, this method leads 
to a transparent and intuitively appealing criterion for model selection. Examples are given using 
PAC measurements on two proteins: liver alcohol dehydrogenase and azurin. 
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1. Introduction 

Bayesian methods are becoming more and more 
popular. This is partly due to their simple and appeal-
ing nature, but mainly to the reliable results the meth-
ods give (see e.g. [1] for a review of Bayesian methods). 
Bayesian methods use prior probabilities for the fit-
ting parameters, a procedure which might seem unrea-
sonable. But prior probabilities are always used when 
analysing experimental data. This is done explicitly 
when a model is chosen, or implicitly (or perhaps even 
inconsciously) when a prior probability enters the cal-
culations without appearing as such. Bayesian meth-
ods are also useful for the selective integration over 
parameters of a given model to improve the precision 
of the remaining parameters of the model, as has been 
shown by Bretthorst [2] for nuclear magnetic resonance 
experiments. In perturbed angular correlation (PAC)-
spectroscopy one often wants to know whether a model 
assuming only one nuclear quadrupole interaction 
(NQI) is sufficient to fit the measured data. In this paper 
it is shown that the Bayesian method helps deciding 
which of two proposed models should be chosen. 

2. Theory 

2.1. Bayesian model selection 

The most likely model is found by calculating the 
total probability for each model. This is demonstrated 

* Presented at the XHIth International Symposium on Nu-
clear Quadrupole Interactions, Providence, Rhode Island, 
USA, July 23 -28 , 1995. 

Reprint requests to L. Hemmingsen. 

below, using Bayes' formula and Gaussian probability 
densities for the parameters of the models. The total 
probability of each model is then calculated by inte-
gration over the parameters. 

When applied to the problem of finding which hy-
pothesis H, (or model) is most plausible after data 
d = ( d d M ) have been measured, Bayes' theorem 
gives for the probability P(H,|</): 

P(Hi\d) = P(d\Hi)P(Hi)/P(d), (1) 

where P{d\Hi) is the probability of the data d, assum-
ing that the model //, is correct, P(Ht) denotes the 
prior probability for the model Ht which is assumed 
constant for "reasonable" hypotheses (i.e. different 
prior probabilities should not be ascribed to different 
reasonable hypotheses), and P{d) is the probability for 
measuring the data, but this term is reduced to a 
renormalization constant after the data have been 
measured. 

For a given model H, having parameters / = 
( / I , . . . , /JV) the most likely / is found using Bayes' 
theorem again: 

P(f\Hi,d) = 
P(d\Hi,f)P(f\Hi) 

P(d\H,.) 
(2) 

The normalising constant P(d\Ht) is usually called the 
evidence for the hypothesis Ht. 

When the most likely set of parameters for a given 
model H{ into be determined, the evidence can be 
ignored. This is often referred to as "the first level of 
inference" [1]. However, to determine which of several 
models is the most likely (at "the second level of infer-

0932-0784 / 96 / 0500-434 $ 06.00 © - Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen 

This work has been digitalized and published in 2013 by Verlag Zeitschrift 
für Naturforschung in cooperation with the Max Planck Society for the 
Advancement of Science under a Creative Commons Attribution-NoDerivs 
3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal 
of the Creative Commons License condition “no derivative works”). This is 
to allow reuse in the area of future scientific usage.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung
in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der
Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:
Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland
Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der 
Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, 
um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher 
Nutzungsformen zu ermöglichen.



424 Lars Hemmingsen and Steen Hansen • Bayes' Theorem Applied to the Selection of Models in PAC 423 

ence"), (1) and 2 lead to 

P(Ht\d)cc P{d\Hi)=\P{d\HiJ)P(f\Hi)dN f , (3) 

where the likelihood is 

P(d\//,,/) = e x p ( — L ) / Z L , 

ZL = j exp( —L) dM d . 

(4) 

(5) 

For the usual case of Gaussian errors, L = /2/2 and 
ZL = U(2n a2)1'2, where cr, is the standard deviation 
of the Gaussian noise at data point i. x2 is defined in 
the conventional manner, i.e. 

x 2 = Z 
(d-yd2 

i = 1 0"; 
(6) 

where y ( f ) denotes the modelled data. 
Assuming similar Gaussian distributions, the prior 

probability for the distribution / can be written as 

with 

and 

P(f\Hi) = exp(S)/Zs 

N i f _ f 
^ V J j, prior J j, 0 / 

j= 1 2 s 

Zs=jexp(S)d»f=n(2nsj)1/2, 

(7) 

(8) 

(9) 

where / p r i o r and / 0 are the estimates of the parameters 
in the model before and after the data are measured, 
respectively, and Sj defines the limits within which the 
parameter f j is known to be found prior to the exper-
iment. For the application of this method the exact 
choice o f / p r i o r and s is usually not very important. 

It is noted that by using the specific choice for the 
prior probability in (8), S is equal to the second order 
approximation to the conventional expression for the 
entropy of a distribution when the distribution is non-
negative and Sj = Y f j , p r i o r -

Calculating the evidence from the above equations, 
one obtains 

P(d\Hi) = 
J e x p ( S ) e x p ( - Z

2 / 2 ) dN f 

_ e x P ( S p ) / e x p ( —/2/2) dN f 
Zs Z L 

(10) 

assuming the prior distribution to be constant over 
the region where the posterior is maximal. For 
B = W / 2 / 2 , (10) gives the expression for the evidence 
of a model: 

P(d\Hi) = 
exp (S0) (2 7i)'v/2 exp ( - y2/2) det (B)" 

n(2ns2)1/2U(2na2)1'2 

exp(S 0 )de t (B)- 1 / 2 e x p ( - * 2 / 2 ) 
2 \ l / 2 d D 

From (11) the normalised probability for a model can 
be calculated. For several possible models the one 
having the largest probability should be selected. In 
(11) the last factor, exp( — ~/2J2\ is proportional to the 
likelihood (the quality of the fit), and the Y\ i2na 2 ) 1 1 2 

is constant for a given data set. The remaining part of 
the fraction has been termed the "Occam factor" as it 
is this part which penalises the probability if more 
parameters are introduced in a model. Even though 
an increasing number of parameters will give a better 
fit to the data, the Occam factor will ensure that the 
total probability (as given by (11)) decreases if more 
than a "best" (most likely) number of parameters is 
introduced. If the parameters are almost independent, 
de t (B) - 1 / 2 can be approximated by the product of the 
posterior uncertainties of the parameters F[(Aj) (given 
by the fitting procedure) which for S o %0 gives the 
evidence as 

P(d\Hi) cc exp( —Xo/2) (12) 

From (12) it is obvious how the Occam factor in the 
form o f E [ ( V s ; ) b a l a n c e c l against the quality of the 
fit exp( — Xo/2). PI (Aj/Sj) is the ratio of the accessible 
volume of the parameter space after and before the 
experiment, respectively. The negative logarithm of 
this ratio is equal to the information content of the 
experiment. 

In the examples shown below, (11) has been used for 
calculations of the evidence. 

3. Application to PAC 

3.1. PAC 

In y-ray PAC spectroscopy the NQI of the nuclear 
quadrupole moment with the electric field gradient 
(EFG) from the surrounding charge distribution is 
measured. In the PAC-experiments referred to in this 
work the isotope l l l m C d was used. The "angular cor-
relation" refers to the fact that the two y-rays are not 
emitted in random directions with respect to each 
other. Furthermore, if the nucleus interacts with 
extranuclear fields during the decay, the angular cor-
relation is perturbed. The perturbed angular correla-
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tion can be measured and provides information about 
the local charge distribution around the PAC-isotope. 
By using appropriate combinations of coincidence 
count-rates in the detectors, the experimental data are 
described by the following time dependent function, 
(see e.g. [4]): 

Af G2(CO0, rj, S,A; t) + c0 

_ A eff _-(Xt) a0+ Z A,- COS(B, (D0 t) 
i= 1 

• exp 
- (fo, OJq fre 

16 In 2 exp « w r 

(13) 

+ c0 , 

where Ae" is the measured amplitude of the an-
isotropy, a>0 is proportional to the numerically largest 
element of the diagonalised EFG-tensor and tj is the 
so-called asymmetry parameter, also determined by 
the EFG-tensor [4], The parameters a t and bt are de-
pendant on rj [3], and c0 is the zero point level of the 
data. The Brownian motion of the molecules in solu-
tion gives rise to a rotational correlation time, TC, 
which is fitted through / = 1/Tc. Small variations in the 
coordination geometry of the PAC-isotope from one 
molecule to the next give rise to a spread of co0-values, 
which is fitted with a Gaussian distribution centered 

{-(fe,aj0frJ2} 
at co0 having the width <5. The exp j i6in2 j-term 
takes into account the limited time resolution of the 
experimental setup, with £res = l ns. Equat ion (13) is 
valid under the assumptions that the PAC-isotope oc-
cupies the same site in all the randomly oriented 
molecules and that the molecules move sufficiently 
slow to apply the socalled adiabatic approximation 
[4]. 

If the fit includes more than one NQI , it is given by 
a sum of terms. For example the function fitted to the 
data assuming two NQIs is c 0 + /l | f f

1 G2(CO0 A , RJ,, 
dlt t) + AE

2"2 G2(IO0 2 , T]2, S2, A 2 ; t). 
A priori unrestrictive limits may be set for the 

parameters / to be fitted, and in this work the following 
values have been used: - 0.5 < c 0 < 0.5,0.0 < A f r < 0.2, 
0.0 <»7 <1.0, 0.0 Mrad/s < w 0 < 1000 Mrad/s , 0.0 <<5 
<0.5, 0.0 n s " 1 < / . < 1.0 n s " T h e s e values have been 
chosen on the basis of a very large number of PAC-ex-
periments, spanning a wide range of experimental 
conditions, and they determine the Sj in (11). 

3.2. One or two NQIs 

The addition of an extra NQI leads to an additional 
five parameters in the fitting function. The precision of 

the fitted parameters is typically of the order of 1 % 
(i.e. A / s ; * 0 . 0 1 in (12)), leading to a difference in the 
Occam factor of the order of 0.015 between the two 
models. As the quality of the fit is usually expressed 
through the value of the reduced chi-square, %2 > the 
criterion for acceptance of the increased complexity of 
the two-NQI model is that y2 has to decrease by about 
JJ 5 log 0.01, where M is the number of data points. 
For the examples shown below, M is about 200. This 
leads to a reduction in y2 of about 0.2 to accept the 
additional N Q I (or a reduction in y2j2 - the exponent 
in (11) - of about 20). 

However, if the two-NQI fit is much "broader" than 
the one-NQI fit, in the sense that the Occam factor is 
larger for the two-NQI fit, the two-form model should 
be preferred even if it lowers the %2 only marginally, as 
the "weaker" statement about the two-NQI model is 
less informative than the more precise statement 
about the one-NQI model. Clearly, this will rarely be 
the case when analysing PAC spectra. 

The application of Bayes' theorem is of course only 
correct to the extent that the underlying assumptions 
are correct, most importantly, for example, that the 
noise of the experiment as well as the prior for the 
parameters have been estimated correctly. If the noise 
level of the experiment is estimated incorrectly, this 
will influence the choice of model as the absolute value 
of the chi-square is used in the calculations. E.g. a 20% 
error in the estimate of the standard deviation for the 
measured data will change the difference in the chi-
squares between two models by 44%. This implies 
that the reduction in y2/2 necessary to accept an addi-
tional NQI is changed (from 20 as mentioned above) 
by about 9. Similarly, changing the width of the prior 
for the parameters by a factor of two changes the 
Occam factor by exp(3.5). Consequently, if the stan-
dard deviation for the measured data is known to 
about 20% precision and the prior for the parameters 
is assumed to be known within a factor of two, then 
the log (evidence) is only known with a precision of 
1 0 - 1 5 and the difference in log (evidence) between two 
models should be larger than this to distinguish be-
tween the models. For PAC this means that if the 
difference in log (evidence) is smaller than 10-15, the 
simpler model having fewer parameters should be pre-
ferred. 

3.3. Examples 

For the case of PAC a box function will impart the 
prior information about the fitting parameters better 
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Fig. 1. 
a) The experimental PAC-
spectrum for the Met l21 Asn 
mutant of azurin and the fit 
(full line) assuming only one 
N Q I to be present. 
b) The experimental PAC-
spectrum for the Metl21Asn 
mutant of azurin and the fit 
(full line) assuming two 
N Q I s to be present. The first 
three data points are not 
shown nor fitted to, because 
of the presence of large sys-
tematic errors for these 
points. 

than a Gaussian, and consequently a box function of 
width Sj has been used for S in (11) and the following 
examples. 

Example 1: The enzyme horse liver alcohol dehydro-
genase (EC 1.1.1.1) catalyses the reversible oxidation 
of alcohols using N A D + as coenzyme. It contains a 
zinc ion at the active site which is bound to two cys-
teines, one histidine and one solvent molecule. In the 

resting state of the enzyme the solvent molecule is 
H 2 0 . The pK a of this water molecule has been deter-
mined by PAC to be 11.0 ± 0.2 for the cadmium substi-
tuted enzyme [5]. This was done by recording spectra 
at several different pH values. At low pH only a single 
NQI is expected (corresponding to metalbound H 2 0 ) , 
but at pH values near the pK a two NQIs should be 
found, and then again at high pH only a single N Q I 
is expected (corresponding to metalbound O H " ) . In 
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Table 1. LADH at different pH-values. The difference in 
and log (evidence), respectively, between fits using 1 and 
2 NQIs. 

pH A*,2 A log (evidence) 

7.9 0.00 - 1 3 
9.4 0.14 - 5 

10.3 0.81 69 
11.2 1.51 129 
11.5 0.29 17 

Table 2. Azurin and the Metl21Asn mutant . Difference in / ; 
and log (evidence), respectively, between fits using 1 and 
2 NQIs. 

Sample AXr A log (evidence) 

native azurin 0.02 - 9 
Metl21Asn mutant of azurin 0.32 15 

Table 1 the method presented in this paper has been 
applied to the experimental data recorded at different 
pH-values. The variation of A log (evidence) is in good 
agreement with expectation, i.e. the evidence for two 
NQIs peaks strongly around the pK a . Furthermore, it 
is found that the criterion for preferring a fit with two 
NQIs to a fit with only a single NQI, is a change in yj 
of 0.15-0.30, which is also in good agreement with 
experience. 

Example 2: The protein azurin participates in electron 
transfer processes in some Gram negative bacteria [6]. 

It contains a copper ion which is bound to three 
strong ligands, one cysteine and two histidines. Fur-
thermore, two groups, one glycine and one methion-
ine, interact weakly with the copper ion [7], In this 
work we have studied the PAC spectra of cadmium 
substituted native azurin as well as the Metl21Asn 
mutant of it [8], The PAC spectrum recorded for the 
Metl21Asn mutant is shown in Fig. 1 along with the 
fits assuming one and two NQIs, respectively. The 
interesting question asked here is whether the metal 
ions all have the same coordination geometry, or if 
two different coordination geometries are present. The 
result of applying the Bayesian method is that there is 
only one NQI present for the native protein, a fact 
which has been shown previously [8], whereas it is 
likely that two NQIs are present for the Metl21Asn 
mutant, see Table 2. This is in good agreement with 
the fact that the presence of two NQIs has been ob-
served by PAC-spectroscopy for several other 
Metl21Xxx (Xxx being an aminoacid) mutants of 
azurin. 

4. Conclusion 

It has been shown that the Bayesian framework can 
be used for model selection in perturbed angular cor-
relation of y-rays spectroscopy. Using prior knowl-
edge about the acceptable range of the fitted parame-
ters and comparing this to the standard deviation and 
the quality of the fit, a quantitative criterion for the 
acceptance of a more complex model is derived. 
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